Personalized medicine promised a cure for rare genetic disorders. Now patients and families themselves are trying to make up for its failures.

ONE JULY AFTERNOON last summer, Matt Wilsey distributed small plastic tubes to 60 people gathered in a Palo Alto, California, hotel. Most of them had traveled thousands of miles to be here; now, each popped the top off a barcoded tube, spat in about half a teaspoon of saliva, and closed the tube. Some massaged their cheeks to produce enough spit to fill the tubes. Others couldn’t spit, so a technician rolled individual cotton swabs along the insides of their cheeks, harvesting their skin cells—and the valuable DNA inside.

One of the donors was Asger Vigeholm, a Danish business developer who had traveled from Copenhagen to be here, in a nondescript lobby at the Palo Alto Hilton. Wilsey is not a doctor, and Vigeholm is not his patient. But they are united in a unique medical pursuit.

Wilsey’s daughter, Grace, was one of the first children ever diagnosed with NGLY1 deficiency. It’s a genetic illness defined by a huge range of physical and mental disabilities: muscle weakness, liver problems, speech deficiencies, seizures. In 2016, Vigeholm’s son, Bertram, became the first child known to die from complications of the disease. Early one morning, as Bertram, age four, slept nestled between his parents, a respiratory infection claimed his life, leaving Vigeholm and his wife, Henriette, to mourn with their first son, Viktor. He, too, has NGLY1 deficiency.

Grace and her mother, Kristen Wilsey. BLAKE FARRINGTON

The night before the spit party, Vigeholm and Wilsey had gathered with members of 16 other families, eating pizza and drinking beer on the hotel patio as they got to know each other. All of them were related to one of the fewer than 50 children living in the world with NGLY1 deficiency. And all of them had been invited by the Wilseys—Matt and his wife Kristen, who in 2014 launched the Grace Science Foundation to study the disease.

These families had met through an online support group, but this was the first time they had all come together in real life. Over the next few days in California, every family member would contribute his or her DNA and other biological samples to scientists researching the disease. On Friday and Saturday, 15 of these scientists described their contributions to the foundation; some studied the NGLY1 gene in tiny worms or flies, while others were copying NGLY1 deficient patients’ cells to examine how they behaved in the lab. Nobody knows what makes a single genetic mutation morph into all the symptoms Grace experiences. But the families and scientists were there to find out—and maybe even find a treatment for the disease.

That search has been elusive. When scientists sequenced the first human genome in 2000, geneticist Francis Collins, a leader of the Human Genome Project that accomplished the feat, declared that it would lead to a “complete transformation in therapeutic medicine” by 2020. But the human genome turned out to be far more complex than scientists had anticipated. Most disorders, it’s now clear, are caused by a complicated mix of genetic faults and environmental factors.

And even when a disease is caused by a defect in just one gene, like NGLY1 deficiency, fixing that defect is anything but simple. Scientists have tried for 30 years to perfect gene therapy, a method for replacing defective copies of genes with corrected ones. The first attempts used modified viruses to insert corrected genes into patients’ genomes. The idea appeared elegant on paper, but the first US gene therapy to treat an inherited disease—for blindness—was approved just last year. Now scientists are testing methods such as Crispr, which offers a far more precise way to edit DNA, to replace flawed genes with error-free ones.

Certainly, the genetics revolution has made single-mutation diseases easier to identify; there are roughly 7,000, with dozens of new ones discovered each year. But if it’s hard to find a treatment for common genetic diseases, it’s all but impossible for the very rare ones. There’s no incentive for established companies to study them; the potential market is so small that a cure will never be profitable.

Which is where the Wilseys—and the rest of the NGLY1 families—come in. Like a growing number of groups affected by rare genetic diseases, they’re leapfrogging pharmaceutical companies’ incentive structures, funding and organizing their own research in search of a cure. And they’re trying many of the same approaches that Silicon Valley entrepreneurs have used for decades.

AT 10:30 ON a recent Monday morning, Grace is in Spanish class. The delicate 8-year-old with wavy brown hair twisted back into a ponytail sits in her activity chair—a maneuverable kid-sized wheelchair. Her teacher passes out rectangular pieces of paper, instructing the students to make name tags.

Grace grabs her paper and chews it. Her aide gently takes the paper from Grace’s mouth and puts it on Grace’s desk. The aide produces a plastic baggie of giant-sized crayons shaped like cylindrical blocks; they’re easier for Grace to hold than the standard Crayolas that her public school classmates are using.

2018-06-14T13:43:31+00:00